往期推文我們介紹了巨噬細(xì)胞,本期我們來(lái)介紹同樣作為抗原呈遞細(xì)胞的樹(shù)突狀細(xì)胞。
樹(shù)突狀細(xì)胞
先天免疫和適應(yīng)性免疫之間的橋梁
2011年的諾貝爾生醫(yī)獎(jiǎng)得主史坦曼,發(fā)現(xiàn)樹(shù)突狀細(xì)胞(DC)是人類(lèi)免疫細(xì)胞系統(tǒng)的司令官,號(hào)令主導(dǎo)免疫系統(tǒng)的各種功能。DC的功能是吞噬、加工及呈遞抗原,將交手過(guò)的癌細(xì)胞特征告訴輔助T細(xì)胞和B細(xì)胞。接受樹(shù)突DC細(xì)胞指令的輔助T細(xì)胞,會(huì)活化細(xì)胞毒性T細(xì)胞、自然殺手NK細(xì)胞、巨噬細(xì)胞和已經(jīng)接受樹(shù)突DC細(xì)胞刺激的B細(xì)胞;細(xì)胞毒性T細(xì)胞會(huì)在辨識(shí)癌細(xì)胞后予以毒殺,少數(shù)的細(xì)胞毒性T細(xì)胞會(huì)被輔助T細(xì)胞轉(zhuǎn)為記憶T細(xì)胞;自然殺手NK細(xì)胞會(huì)直接攻擊癌細(xì)胞,巨噬細(xì)胞則會(huì)更容易分解所吞噬的癌細(xì)胞。

Fig.1 A dendritic cell (blue) engages a T cell (yellow).
DC作為目前公認(rèn)的最有效的抗原呈遞細(xì)胞,在介導(dǎo)固有免疫應(yīng)答和誘導(dǎo)適應(yīng)性免疫應(yīng)答中起關(guān)鍵作用,可以誘導(dǎo)腫瘤免疫耐受。基于DC的免疫療法是利用患者自身免疫系統(tǒng)的潛力消除轉(zhuǎn)移性、難治性惡性腫瘤中的腫瘤細(xì)胞。許多DC疫苗已進(jìn)行了臨床測(cè)試,且具有免疫原性,在某些情況下與臨床結(jié)果相關(guān)。以DC為基礎(chǔ)的腫瘤免疫治療相關(guān)的臨床研究在國(guó)內(nèi)外不斷開(kāi)展,體現(xiàn)了腫瘤免疫治療在惡性腫瘤治療中的強(qiáng)大優(yōu)勢(shì)。
DC分類(lèi)
DC屬于單核吞噬細(xì)胞(mononuclear phagocytes ,MPs),MPs包含巨噬細(xì)胞,單核細(xì)胞,樹(shù)突狀細(xì)胞。樹(shù)突狀細(xì)胞(DC)的亞群具有不同的發(fā)育特征,專(zhuān)門(mén)用于啟動(dòng)不同類(lèi)型的效應(yīng)T細(xì)胞,從而調(diào)整免疫反應(yīng)的結(jié)果。最初,樹(shù)突狀細(xì)胞被分為淋巴和髓系兩類(lèi),但這一命名方法并不能準(zhǔn)確反映每個(gè)樹(shù)突狀細(xì)胞亞群的發(fā)育起源。按照來(lái)源和分化途徑可以將樹(shù)突狀細(xì)胞分為傳統(tǒng)DCs(conventional DCs,cDCs),血漿DCs(plasmacytoid DCs,pDCs),朗格漢斯細(xì)胞(Langerhans cells,LCs)。cDCs又分為傳統(tǒng)I型樹(shù)突狀細(xì)胞(cDC1)和傳統(tǒng)II型樹(shù)突狀細(xì)胞(cDC2)。

Fig. 2 Functionally specialized conventional and non-conventional dendritic cell subsets and related lineages.
cDC1
cDC1起源于CD34+造血干細(xì)胞,分化過(guò)程受包括干擾素調(diào)節(jié)因子8 (IRF8)在內(nèi)的轉(zhuǎn)錄因子組合的調(diào)節(jié);具有獨(dú)特的C型凝集素受體CLEC9A和趨化因子X(jué)CR1的表達(dá)特征。cDC1通常被稱(chēng)為交叉呈遞DCs,因其具有交叉呈遞抗原的能力,并能夠引起腫瘤免疫反應(yīng)。

Fig. 3 Illustration depicts the common signatures and shared signatures expressed by human and mouse conventional dendritic cell subset 1. The signature includes surface markers, transcription factors and major pattern recognition receptors. The signatures with * marks indicate tissue specific expression.
cDC2
cDC2是通過(guò)高水平表達(dá)MHC II、CD11c和SIRPA來(lái)識(shí)別的。cDC2亞群主要依賴(lài)于IRF4和Zeb2介導(dǎo)的轉(zhuǎn)錄調(diào)控,而cdc1依賴(lài)于IRF8、BATF3和ID2.cDC2是存在于人體不同組織和器官中主要的DC群體,它們表達(dá)一系列TLRs,能夠?qū)暮塑账岬蕉嗵堑母鞣N危險(xiǎn)信號(hào)作出反應(yīng)。與其他穩(wěn)態(tài)DC亞群相比,它們還表達(dá)了高水平的NLRPs和其他炎癥相關(guān)信號(hào)分子,表明它們具有感知不同危險(xiǎn)信號(hào)的功能。

Fig. 4 Illustration depicts the common signatures and shared signatures expressed by human and mouse conventional dendritic cell subset 2. The signature includes surface markers, transcription factors and major pattern recognition receptors. The signatures with * marks indicate tissue specific expression.
pDCs
當(dāng)遇到病毒感染細(xì)胞時(shí),pDCs被確定為產(chǎn)生干擾素的細(xì)胞亞群,它們產(chǎn)生I型干擾素和激活效應(yīng)細(xì)胞的能力在啟動(dòng)抗病毒免疫應(yīng)答方面具有關(guān)鍵作用。pDCs對(duì)許多RNA和DNA病毒有響應(yīng),包括VSVG, HCV, HAV, LCMV,登革熱病毒等。

Fig. 5 Illustration depicts the common signatures and shared signatures expressed by human and mouse plasmacytoid dendritic cell. The signature includes surface markers, transcription factors and major pattern recognition receptors.
LCs
LCs最早于19世紀(jì)被Paul Langerhans發(fā)現(xiàn),后來(lái)被認(rèn)為是DC細(xì)胞的一個(gè)亞系。歷史上,LCs被認(rèn)為是樹(shù)突狀細(xì)胞,因?yàn)樗鼈兙哂械湫偷臉?shù)突狀細(xì)胞遷移到淋巴結(jié)、呈遞抗原和激活T細(xì)胞的特征。LCs位置優(yōu)越,位于外界環(huán)境的最外部,是免疫系統(tǒng)的第一道防線。

Fig. 6 Specialized functions of mouse classical dendritic cell subsets.
DC研究相關(guān)小鼠模型
基于已有研究,人類(lèi)和小鼠DC已經(jīng)被成功分成不同功能的亞群。構(gòu)建遺傳小鼠模型,通過(guò)檢測(cè)表面標(biāo)記物不同組織的表達(dá)情況,有助于功能冗余的亞群統(tǒng)一。同樣的,這些模型有助于分離具有非冗余功能的表型相似的亞群。對(duì)于人類(lèi)DC的研究,也已經(jīng)沿著這些思路取得了進(jìn)展。根據(jù)小鼠單核細(xì)胞和DC發(fā)育當(dāng)前已有模型(Fig. 7)整理,南模生物可提供的用于定義樹(shù)突狀細(xì)胞發(fā)生和功能的小鼠模型情況請(qǐng)見(jiàn)Table1.

Fig. 7 Genetic models of mouse dendritic cell development and lineage restriction.
Table 1: Useful models for the definition of dendritic cell ontogeny and function by SMOC.

*動(dòng)物狀態(tài)以實(shí)際咨詢(xún)?yōu)闇?zhǔn)
南模生物深耕基因編輯領(lǐng)域,提供全方位模式生物服務(wù),包括基因修飾成品模型供應(yīng)、個(gè)性化模型定制、飼養(yǎng)繁育、表型分析、藥效評(píng)價(jià)等,滿足不同實(shí)驗(yàn)室需求。
Reference:
[1]Anderson D A , Dutertre C A , Ginhoux F , et al. Genetic models of human and mouse dendritic cell development and function[J]. Nature Reviews Immunology, 2020.
[2]Eisenbarth S C . Dendritic cell subsets in T cell programming: location dictates function[J]. Nature reviews. Immunology, 2018. 19(2).
[3]Balan S , Saxena M , Bhardwaj N . Dendritic cell subsets and locations[J]. International Review of Cell and Molecular Biology, 2019.
[4]Mueller,K. L . A dendritic cell target for immunotherapy[J]. Science, 2014. 346(6209):597-597.
[5]Steinman, Ralph M . Decisions About Dendritic Cells: Past, Present, and Future[J]. Annual Review of Immunology, 2012. 30(1):1-22.
[6]Broz M L , Binnewies M , Boldajipour B , et al. Dissecting the Tumor Myeloid Compartment Reveals Rare Activating Antigen-Presenting Cells Critical for T Cell Immunity[J]. Cancer Cell, 2014. 26(5):638-652.